Mobile: Native, Hybrid or Web App For Your Business
Daria Lymanska
CEO & Founder
November 10, 2020
2
min read
With more than 2.7 billion smartphone users across the world in 2020, it’s no surprise that the mobile app industry is expended with no signs of stopping. Nowadays, smartphones have become a useful and convenient instrument that offers multiple benefits such as communication through emails and social networking, web surfing, entertainment, GPS and various other productivity apps.
In fact, studies show that the average American checks their phone every 12 minutes. 10% of people check their phones every four minutes.
We use our phones every day at work, at home, on the street, in bed, while we are eating, in our cars. You might be reading this article from a mobile device right now.
What are people doing on their phones? Well, 90% of mobile time is spent on apps.
According to these facts, many companies considering mobile apps are facing a common challenge — which app development approach to choose? Should we build a native, mobile web, or hybrid app? More importantly, which is the most appropriate app type for you and your business?
Let’s find out what are native, mobile web, and hybrid apps, analyze the differences between them, as well as the advantages and disadvantages of each. After reading, you will be able to understand which approach will be the right one for your business idea.
Web Apps
A web app is a software program that uses web technologies like HTML5, CSS, JavaScript. It exists entirely within browsers such as Safari and Chrome and is essentially a mobile website. It is therefore not possible to download them from an app store.
Also, the web app is not connected with the device’s operating system and does not use its storage. Unlike an iOS or Android app, there is no software development kit (SDK) for a developer to work with. There are templates and frameworks for developing web apps like Angular, React, and Vue.js that you can use to get a quick start.
So, here are some pros of web application
Developing a web app can be simple and quick. So, web apps are a cost-effective way to put your product in the hands of a lot of users.
Web apps can be built for all platforms as long as they can run in an appropriate web browser.
The user doesn’t have to manage updates manually. The newest version always loads when a user opens a web app.
And some cons:
Searching for an app might be difficult because the user doesn’t find it in any app store.
A browser is required to run a web app. It means that users have to take more steps to use a web app, whether that’s searching for the page or typing in a URL.
Web apps can be slower and lack a lot of benefits. They only work online and they don’t have access to as many phone features like push notifications, contacts, etc.
However, as browsers and web apps become more advanced, PWAs (progressive web apps) offer a wider functionality like:
Sending push messages
Using some touch screen elements
Using some of the device’s hardware
So, If your startup is on a budget and doesn’t require complex functionalities or access to operating system features, then building a web app can be the most suitable solution.
Native Apps
A native app is a software application that is built for specific platforms and is written in languages that the platform accepts. For example, Swift and Objective-C for native iOS apps, Java or Kotlin for native Android apps and C# for the most part for Windows Phone apps. Native apps are also built using the specific Integrated Development Environment (IDE) for the selected operating systems.
Advantages of the native application:
Native apps offer the fastest, most reliable and most responsive experience to users.
Good integration with the hardware of the device (e.g. camera, GPS, phone, touch screen)
It comes with the push notification functionality.
Great design and user experience possibilities. For example, the implementation of sophisticated UI/UX design and animation.
These apps can be downloaded from app stores and installed on mobile devices, where they can be placed as a designated icon on the home screen.
Native apps are also more suitable for working offline.
Disadvantages:
Need more than one codebase. iOS apps will not run on Android and the opposite, so you will have to work with different codebases for every platform you choose to build in.
Native apps are usually more expensive in developing, especially for companies that need apps on multiple OS platforms. For both platforms, it will require two separate developers or teams.
A lot of time is spent on development. Also, it takes time to update the app for different platforms.
Require constant updates to keep with the current OS versions.
Expensive to keep your native app updated
Both Apple App Store and Google Play get a 30% commission from every in-app payment.
To sum up, a bigger budget is required if you want to build your app for multiple platforms (i.e. iPhones and Android) and to keep your native app updated. Native apps are not the best option for simple applications.
By offering a great user experience, better performance and accessibility, native apps are able to offer users a more personalized product.
Hybrid apps
Hybrid apps combine the power of native and web apps to reap the benefits of both. Actually they are made, so they look and feel like native applications, but like web apps, are built with JavaScript, HTML, and CSS. Also, there is a shell that is downloadable and loads the code using a WebView.
Advantages of the hybrid apps:
Hybrid apps don’t need a web browser like web apps.
With a hybrid app, you only have one codebase to manage. So, instead of building two apps like with native apps, you’re building one app, and it works on both platforms.
Hybrid app developers are often less expensive than native application developers. You will probably require half the number of developers two native apps would have required. Or, with the same number of developers, a hybrid app could be published in half the time.
Hybrid is a great option for developers that create visually intense applications, for instance, games
Hybrid apps let you retain the same ability to access device features as with native apps.
Easy to work with, maintain and upgrade
Because of their native infrastructure, hybrid apps can work offline.
Hybrid apps are easier to scale to another platform. Once you’ve built for one platform, you can launch on another, like Windows Mobile.
The downside:
Getting your hybrid app to run appropriately on each platform generally takes substantial work. Sometimes, the total cost might become comparable to that of fully native apps. It all depends on how close you want to get to the “native user experience” or how simple your app is.
Hybrid apps can be slower than native apps.
Need to customize to a large number of exciting browsers
Inability to implement complex features (e.g. in-app analytics, charts, diagrams)
These hybrid systems make bug fixing more difficult.
Hybrid apps load in a WebView, so performance can be worse than native applications.
Say you have an idea for an app, and you don’t know if people will like it or not. If you understand that a web app doesn’t really allow you to test this app, the simple version of the hybrid app will be a good solution for you.
You give to people to download and use the app on their device, although you are short on resources. Usually, a startup project is decided to create a hybrid app that in the startup world, this is called an MVP, or minimum viable product.
Conclusion
There are many different directions in which you can take your app, all of which have their pros and cons. The choice between web, native, and hybrid development is dependent on a number of factors, including business needs, app requirements, developer skill, budget and timelines. What’s important is to spend enough time thinking and analyzing before you start building because the apps are expensive enough. So, you may only have one go at getting it right. Find out the information as much as you can about the different kinds of apps and the development stages.
It depends on your needs. If you want high performance and can afford the cost, go for native. If you need a more budget-friendly option and cross-platform compatibility, hybrid might work. If you have a simple app with minimal features, a web app could be sufficient.
What are the advantages of native apps?
Native apps offer the best user experience, speed, and device integration (e.g., camera, GPS). They work offline and allow push notifications. However, they require separate codebases for iOS and Android, making them more costly.
Why are hybrid apps considered a good option?
Hybrid apps use one codebase for both iOS and Android, saving time and money. They offer access to device features, like native apps, but may not perform as well, especially with complex features.
Are web apps cheaper to build than native or hybrid apps?
Yes, web apps are generally cheaper and quicker to develop because they don’t need to be built separately for iOS and Android. However, they have limitations, like not being able to work offline and requiring a browser to access.
The mobile apps market is rapidly growing. According to Grand View Research, the global mobile app market was evaluated at approximately USD 253 billion in 2023 and is going to grow with a 14.3% CAGR by 2030. That’s why the need for qualified mobile development specialists is so relevant today.
At the same time, one of the key features of a competent specialist is knowledge of the software development life cycle (SDLC) and which of the existing models is best to use in a specific project. The following article will overview the most popular SDLC models and explain where to apply them for the best results.
What is the Software Development Life Cycle (SDLC)?
The software development lifecycle is a methodology that guides the development team during the app creation process. Each of the development life cycle phases has its aims, timeframes, and challenges. Yet, a systemized approach toward software development ensures that the final product is of the highest quality.
In comparison, there are other approaches to software development. For example, development teams can choose from the following options:
Application lifecycle management. It has a broader scope outside of the actual development process. It can include several SLDC development life cycle stages inside.
Software testing lifecycle. This method emphasizes debugging and elimination of possible errors in the product.
Product development lifecycle. This strategy includes market and product promotion after its development is complete.
What Is the Purpose of the Software Development Life Cycle (SDLC)?
The SDLC’s clear division into development cycle stages ensures that software is developed in a controlled environment. The systematic approach helps to avoid such challenges as:
Budget breaches.
Project overruns and crunches
Failure to meet the requirements
Expired deadlines
Creative freedom is important during the software development process. Yet, the SDLC approach ensures that all the creativity and revolutionary solutions are channeled constructively.
While following the life cycle of software development, each team member knows what task they should do and its deadline.
What are the 7 Phases of SDLC?
There are seven common SDLC phases:
Requirements analysis
Planning
Design
Development
Testing
Deployment
Maintenance
Let’s consider them in more detail.
Requirements Analysis
It is the initial stage at which the developer's team evaluates the required features for the app. It defines how long the app will be in development, the budget’s size, and the deadlines.
This step answers such questions as:
What is the objective of the app?
Is it an upgrade or a brand-new software?
What are the expected results?
Planning
The project can be planned after its goals and desired results are established. Planning in SDLC defines the technological stack and project roles. The project roadmap is also developed during the planning phase of SDLC.
Design
The software blueprint is created during the design stage. Ideas turn into features, architecture, and UI/UX design. Designing also includes consideration of the software's platforms and security as a part of SDLC processes.
Design can undergo several iterations before reaching its final look. During this phase, teams usually create a software prototype to see how all the features work together. This phase concludes with design document specification — a text description of the app’s functionality to share with stakeholders and within the team.
Development
Development is the long-lasting of the SDLC steps. During this stage, the team implements planned features and functionality into actual software. Tools for progress tracking and version control, such as Git, are common in the software development stage.
Testing
Testing comes after the implementation phase in SDLC. It is a rigorous process during which all software elements are evaluated. Testing can include:
Performance testing
Security testing
Integration testing
Alpha and beta testing, and so on
The result of the testing and debugging software development cycle phases should be a product meets its specifications and is ready for the commercial environment.
Deployment
Usually, the apps undergo testing and development in a secluded, special environment. Deployment implies transferring the software to the commercial space. The deployment phase includes final testing of the working product and gathering feedback from a limited audience.
The product is ready for full-fledged commercial use when the software development stages are over.
Maintenance
Maintenance is the final stage of the SDLC cycle. It includes software updates, security, and performance optimization. An upgrade or upscale of the software may be required in the future. In this case, the SDLC begins from the first stage, and the major update undergoes all the steps mentioned.
Most Common SDLC Models
The SDLC standards are common across the industry and development teams. However, there are different SDLC models. Each model serves its own purpose and offers a different order in which the different phases are performed.
SDLC Agile Model
The Agile SDLC model is the hallmark of modern industry. This model implies dividing the bigger tasks into smaller chunks and working on their implementation. The Agile method emphasizes communication between cross-functional teams and stakeholders.
Agile also implies frequent feedback gathering and analysis. Rigorous quality control is also an integral part of the Agile model.
SDLC Big Bang Model
The Big Bang model is an almost informal approach to the SDLC cycle. It ignores any planning or assessment and jumps straight into the coding. Such an approach is more risky than others. However, the model works best if delivery time is critical.
The Big Bang model can work for you if you wish to experiment or test waters in new markets.
SDLC DevOps Model
DevOps is a combination of development (Dev) and operations (Ops) teams to streamline the delivery of software products. The combined practices require service providers of highly skilled specialists. The main DevOps principles are continuous integration and delivery at the enterprise software development level. These methods help automate the process and streamline management tasks.
The DevOps model can strain the budget. However, the result is worth the cost. The DevOps SDLC cycle ensures that the product is in a deployable state and can be swiftly modified.
SDLC Iterative Model
An Iterative model is another representative SDLC cycle. Unlike the Agile model, iterative SDLC does not require continuous customer involvement. Besides, the iterative model has a more defined structure.
The Iterative model implies iterating the software and making changes between the cycles. Such an approach works well for expanded teams and allows the desired results to be achieved without failing deadlines or breaching the budget.
SDLC Lean Model
The Lean model is one of the oldest SDLC cycles that has persisted until today. It aims to achieve maximum efficiency in resource management. Unlike Agile, it focuses on the highest possible quality instead of close and consistent communication with the client.
It also takes a broader than Iterative model approach and improves the overall development process rather than the product itself. Lean is more philosophy than a precise model. As an SDLC model, Lean will ensure the quality of the product and client satisfaction before everything else.
SDLC Spiral Model
The Spiral model is a combination of Iterative and Waterfall models (this one will be discussed below), taking the best features from both approaches. The model consists of spirals, and each spiral has the following steps:
Planning
Risk analysis
Development
Testing
Such an approach allows risk mitigation at the early stage of the project. While being time-consuming, the Spiral model can be a fail-proof net for your project.
SDLC Waterfall Model
If you are looking for something straightforward and easy to manage – the Waterfall model is your choice. It takes the SDLC structure at face value and follows each step consecutively. The Waterfall model has its risks. It is rigid, and if changes or feedback appear in later stages, it will be hard to implement them. At the same time, the Waterfall model struggles with scalability.
On the other hand, it can spare the headache of complex management and task delegation.
Conclusion
Software development is a complex process that requires structure and precision. The Software Development Lifecycle provides such a structure. In seven steps, a software development team can clearly see goals and meet the client’s requirements.
Various SDLC models fit different needs and project scopes, and we know how to work with all of them. If you need specialists for custom software solutions, we are ready to answer your call and create a high-quality product. Contact us to discuss your project in detail.
Firstly, an interesting fact: there are almost 700 programming languages, but we bet that most developers know and use nearly 15% of the list.
Different programming languages are suited for various projects (mobile and web applications, game development, distributed systems, etc.). Also, it is important to identify the most appropriate language specifically for your project.
In this article, we will look at each of the most popular programming languages according to PYPL and TIOBE rankings in detail — helping beginning developers and entrepreneurs select the right language for starting their digital projects.
Programming Languages Ranking
We tried to find out the most popular programming languages in the year 2024, using official information from PYPL, TIOBE, and GitHub rankings.
PYPL – The more a language tutorial is searched, the more popular the language is assumed to be. The raw data comes from Google Trends.
TIOBE – The ratings are based on the number of skilled engineers worldwide, courses, and third-party vendors. Popular search engines are also used to calculate the ratings.
GitHub – The ratings are created using a yearly review of programming languages’ popularity.
PYPL Ranking 2024
The PYPL (PopularitY of Programming Language) Index is created by analyzing how often language tutorials are searched on Google.
The more a language tutorial is searched, the more popular the language is assumed to be. The raw data comes from Google Trends.
The PYPL index can help you decide which language to study, or which one to use in a new software project.
According to PYPL, 5 most popular programming languages are:
The TIOBE Ranking 2024
The TIOBE (The Importance of Being Earnest) index is an indicator of the popularity of programming languages. The index is updated once a month. The ratings are based on the number of skilled engineers worldwide, courses, and third-party vendors. Popular search engines such as Google, Bing, Yahoo!, Wikipedia, Amazon, YouTube, and Baidu are used to calculate the ratings.
It is important to note that the TIOBE index is not about the best programming language or the language in which most lines of code have been written.
According to TIOBE, 5 most popular programming languages are:
The GitHub Ranking 2024
GitHub is one of the biggest code repositories that boasts a massive developer community spanning across the globe. The repository is also growing at a blazing speed. Nearly 70% of global Fortune 50 companies have lately made contributions to GitHub’s open-source codes.
GitHub also shares a yearly review of programming languages’ popularity. Here are the dynamics of changing the popularity of different languages according to the latest GitHub report:
Top 5 Most Popular Programming Languages in 2024
Understanding programming is crucial for advancing technology across sectors like IT, data analytics, and engineering. As technology evolves, certain programming languages emerge as essential due to their functionality, ease of use, and adaptability.
So, which programming languages will continue to be in demand in 2024 and beyond? We turn to the PYPL index for insights, which ranks languages by learning interest. Here's a quick look at the top 5 according to PYPL, focusing on why they stand out.
1. Python
PYPL rating — 28.59%
Pros. Python is regarded as the easiest programming language to learn, because of its simple syntax, a large library of standards and toolkits, and integration with other popular programming languages such as C and C++. It is a popular programming language, especially among startups, and therefore Python skills are in high demand.
Cons. Python’s cons include slower speed than compiled languages, limited concurrency with the GIL, high memory use, and complex debugging due to dynamic typing. It’s also less suited for mobile, embedded, and real-time applications, where efficiency and low latency are critical.
Common Use Cases. Python excels in AI, data science, and financial sectors, with frameworks like TensorFlow making it a top choice for machine learning. It's behind major platforms like Instagram and Pinterest and powers apps such as Dropbox and Spotify, showcasing its wide applicability from cutting-edge tech to core web services.
2. Java
PYPL rating — 15.79%
Pros. Java is a classic choice of many backend developers throughout the world and the only official language for Android app development. Java is designed to be a loosely coupled programming language, meaning that an application written in Java can run on any platform that supports Java. As a result, Java is described as the “write once, run anywhere” programming language.
Cons. Java's downsides include less efficiency in cloud versus server settings and slower performance compared to languages such as C++. It also uses more memory, which can be a drawback in limited-resource situations. Moreover, Java's detailed syntax can result in longer codes, potentially extending development timelines.
Common Use Cases. Java is widely used for creating business and Android apps, and it supports major websites like LinkedIn, Amazon, and Twitter. It's also used in server applications, handling big data with Hadoop, and web development using JSP and servlets, highlighting its wide-ranging use in software projects
3. Javascript
PYPL rating — 8.7%
Pros. JavaScript is essential in front-end development for building interactive websites. With Node.js, Javascript can be used to power server-side content, supporting game and communication applications app development in the browser. Javascript has a lot of frameworks that allow stress-free integration with third-party apps.
Cons. Internet browsers can disable JavaScript code from running, as JavaScript is used to code pop-up ads that in some cases can contain malicious content. Additionally, its dynamic typing system can complicate debugging and maintenance.
Common Use Cases. JavaScript is used extensively in website and mobile application development. Node.js allows for the development of browser-based applications, which do not require users to download an application. Popular apps built with JavaScript frameworks include Slack, Netflix, GitHub, Facebook, Skype, Uber, LinkedIn, Tidal, and more.
4. C#
PYPL rating — 6.77%
Pros. C#, developed by Microsoft, is widely used in developing Windows applications, web services, and mobile apps. C# is also known for its strong type system, making code more robust and error-free. Thanks to its object-oriented nature, it's highly preferred for enterprise-level applications. Regular updates from Microsoft ensure it remains relevant and efficient for modern software development.
Cons. While C# is incredibly powerful for Windows platform development, it's less versatile for programming applications on other operating systems, although .NET Core has made significant strides in cross-platform development. Some critics argue that C# can be less efficient for certain types of low-level programming compared to languages like C or C++.
Common Use Cases. C# is key for creating desktop, web (via ASP.NET), and mobile applications (using Xamarin), especially for Microsoft products. Popular apps like Visual Studio IDE, games such as "Pokémon Go" and "Monument Valley" developed with Unity, and parts of Microsoft Office showcase C#'s versatility in software development.
5. C\C++
PYPL rating — 6.76%
Pros. As one of the first programming languages ever developed, C has served as the foundation for writing more modern languages such as Python, Ruby, and PHP. It is also an easy language to debug, test, and maintain. C++ is an extension of C that works well for programming the systems that run applications, as opposed to the applications themselves. C++ also works well for multi-device and multi-platform systems. Over time, programmers have written a large set of libraries and compilers for C++.
Cons. C/C++ has complex syntax and many features that can make it complicated for new programmers. C++ also does not support run-time checking, which is a method of detecting errors or defects while the software is running. C is not suitable for more modern use cases, such as websites or mobile applications.
Common Use Cases. C++ has many uses and is the language behind everything from computer games to mathematical simulations. C is often used to program hardware, such as embedded devices in automobiles and medical devices used in healthcare. C/C++ is a basic programming language used for creating most existing operating systems, web browsers, and basic Microsoft products.
How to Choose a Programming Language for a Project?
Choosing the right programming language depends on what you need to achieve with your project. Don't just go by how popular a language is. It's better to ask for advice from developers who have worked on similar projects. They can help you pick a language that fits your project's needs, including how it works, its safety, and how it can grow.
Thinking about which language to use? Feel free to contact us today to make a smart choice for your project's future.
With the global aging population and the rise of chronic diseases, the remote patient monitoring market is booming as ever. From 2023 to 2024, it grew from $30.97B to $36.31B. And it won't stop here. Insider Intelligence predicts 70.6M US patients will use software for remote patient monitoring by 2025.
We can't overstate the importance of remote patient monitoring software. Such apps improve access to care, reduce hospital readmissions, and help save up to 60% on hospital visits, which results in higher-quality treatment in the comfort of patients' homes.
And benefits don't end up here. With ongoing digitalization via IoT and modernization of the healthcare system, don't wait for the best time for remote patient monitoring software development. The best time is now.
We've detailed remote patient monitoring apps below and covered their benefits, architecture, and top examples. You'll also see how Darly Solutions crafted an app for the health tech company. Read on, and stay tuned.
RPM monitoring software — is a digital tool for wearables, mobile apps, and medical devices that collects, analyzes, and shares patient data with medical personnel. Heart rate, blood sugar, and oxygen levels are among the most vital metrics. RPM software scores help catch health issues early, manage chronic conditions, and aid post-operative recovery.
How remote patient monitoring software works
From heart rate to blood glucose, each RPM system is designed to monitor a specific aspect of the body. However, elements included in any remote patient monitoring software development are typically the same. This is how the RPM system works:
Collects and exchanges data. Once calibrated, the devices send the data from the patient to the provider. The devices must have a Wi-Fi or LTE adapter for successful transfer. The data can also be sent via Bluetooth to IoT mobile apps via RPM devices.
Centralizes storage.
The provider securely stores the data collected from various sources, including patient devices, analytics systems, and e-medicine.
Analyze. The data is processed using advanced AI for management and analytics. Alerts are sent to caregivers, providers, and patients as needed, per their preferences.
Broadcasts.
Remote monitoring systems become telemedicine platforms when integrated with communication features like video conferencing, simplifying doctor-patient interaction.
Sends emergency notifications. When doctors identify health issues requiring daily monitoring, they oversee the data collected by the RPM system. Notably, it can notify emergency services if a patient needs urgent care. For non-urgent cases, patients can receive instructions for the next steps. However, HIPAA and similar regulations may restrict including sensitive patient information in certain notifications to protect privacy.
Nevertheless, the RPM is part of the broader automation revolution; it has universal healthcare benefits overall. Let's examine the main of them:
Better access to health services
With remote patient monitoring software, medical services have no geographical boundaries. Patients can get timely medical attention at home and manage their health, fostering a greater sense of control under health conditions.
Improved patient outcomes
A study found that RPM cut hospital admissions for chronic care complications by 19% to 41%, which results in improved patient outcomes.
Cost-effective care with reduced readmissions
The average cost of hospital readmission is about $15,200, which makes the prevention of readmissions through remote patient monitoring software financially beneficial for both patients and providers. Even more, it is a well-established fact that early detection generally translates to lower healthcare costs.
Better client engagement and satisfaction
Over 94% of patients are satisfied with RPM's care. It sparks their curiosity about their health and boosts engagement. Such an increased sense of involvement often inspires commitment to treatment plans.
Early detection and timely intervention
The CDC reports that RPM can cut chronic disease complications by 40%. This highlights the need for swift intervention to reduce health risks.
Components of remote patient monitoring software
There is no one-fit RPM soft, as it differs in nature. However, each patient monitoring system generally has 3 to 5 basic components. Let’s delve into them:
Personal monitoring devices
From continuous glucose and heart rate monitors to blood pressure cuffs, digital scales, and peak flow meters.
Patient-side mobile applications
Prioritize user experience, making it easy for patients to access their health data. Additionally, they offer features like medication reminders and secure chats with healthcare providers.
Cloud database
Cloud repositories allow healthcare providers to store large patient data securely. They are scalable and accessible, adapting to growing datasets for long-term monitoring.
Hospital-side web app
These applications are part of hospital management software. They ensure compliance, enable integration, and support decision-making. Additionally, they offer reporting, notifications, and analytics to improve patient care.
Other modules
These comprise decision support systems, reporting tools, notification systems, and analytics platforms.
Essential features in remote patient monitoring solutions
Here are the essential features of a remote patient monitoring (RPM) solution:
Real-time tracking of patient vital signs
Wearable sensors, fitness trackers, blood pressure monitors, and glucose meters perfectly gather and handle real-time health metrics. Then, this data is sent to healthcare providers and added to Electronic Health Records (EHRs) for timely interventions and informed decisions preventing complications.
Intuitive interfaces and user-friendly features
Machines must be easy to set up, a breeze to wear, and simple to operate. Meanwhile, patients should access their data effortlessly through a smooth web or mobile app to track their progress. This connection allows seamless communication with healthcare providers, ensuring everyone's on the same page.
Accessibility features
Ultimately, create a system with all users in mind. Consider accessibility guidelines like WCAG and CVAA to pave the way for inclusive innovation. Encompass voice control for effortless data entry, navigation, and text-to-speech features to support people with dyslexia and other disabilities. Moreover, a patient-first design shines with screen reader compatibility, high-contrast modes, and a crystal-clear interface.
Personalized risk alerts and reminders
For swift and customizable alerts, the RPM system must adjust thresholds. For example, alerts can be sent when vital signs fall outside preset limits. This enables timely intervention to reduce the risk of adverse events.
Safe data transmission and storage
Patient data security is a top priority in remote patient monitoring software development. Thus, apps must comply with all regulations like HIPAA, as they protect the privacy and security of patient data and save from hefty fines.
Smooth EHR integration
EHR integration allows the automatic transfer of RPM data, giving healthcare providers access to complete patient histories for better decision-making and outcomes.
Reports and analysis of patient health data
Advanced analytics and reporting in remote patient monitoring software development provide valuable data insights for healthcare professionals (for data-driven decisions) and patients (to motivate healthier choices).
The architecture of a remote patient monitoring system
Remote health monitoring systems are designed with a multi-layered architecture. Basically, it has five core components that enable uninterrupted data flow within the system. Let’s break into the point of the whole structure:
Smart-connected sensors for health tracking
The sensor layer comprises remote monitoring devices such as EKGs, sleep trackers, smartwatches, and blood pressure monitors. Then, they transmit this data to the dedicated mobile app via Bluetooth or to the cloud via the Internet.
Patient interface
Patient-facing RPM apps collect real-time health data from connected medical devices, allowing manual entry of symptoms and medication intake. RPM apps often include data visualizations for tracking health trends and may have integrated telemedicine features, such as video conferencing for appointments, follow-ups, prescriptions, and virtual consultations.
Cloud RPM server
Cloud services form the core of RPM systems, providing secure storage, processing, and data analysis from devices and the RPM app. This engine also integrates with EHR systems to access patient health information (PHI) in FHIR format. It can identify trends, such as early signs of complications.
Medical staff dashboard
Patient data flows bidirectionally between the medical staff interface and the cloud RPM server, enabling effective management by care teams.
Data visualization module. Via charts and graphs that show trends in vital signs, medication adherence, and other data, the module gives providers a 360-degree view of the patient.
Alert management module. The system promptly alerts clinicians to critical situations and device failures in real-time.
Reporting module. The module generates custom reports on patient data, which hugely help track progress and gain insights over time.
Communication module. This module has two-way messaging, video chat, and/or telephony integration and is made for secure, remote communication between clinicians and patients.
Appointment management module.
This module handles appointment scheduling and patient-provider communication, allowing both patients and providers to request appointments.
Depending on the organization's needs, a doctor-facing RPM interface can include other modules, such as patient management, care plans, and patient education.
Admin web panel
A key part of the RPM architecture is a control dashboard. It helps with admin tasks like configuring roles, managing patients, and setting alarms.
Once you have a clear idea for your software product, find an experienced dev company to implement it. When contacting your tech partner, you don't need detailed software requirements. A high-level understanding of the functionalities is enough to get started for any custom healthcare software development services stages. Let’s break them down:
Step 1: Requirement collection and analysis
The process starts by refining your product vision. Then, define project goals based on the health conditions your RPM solution will address. Your team will then identify core functions, pick the best tech stack, and plan the app's architecture. If integration with systems like EHRs is required, your tech partner will ensure compatibility.
Step 2: Outlining security and compliance requirements
Remote patient monitoring software must follow HIPAA and FDA rules. The development team implements audit trails, encryption, secure cloud storage, and APIs for secure communication to ensure data security and privacy. They also define a testing strategy for the pre- and post-production phases.
Step 3: Prototyping and design
To create an intuitive, user-first staff interface, UX/UI teams conduct user research to define user personas and journeys. Based on this research, designers create a prototype reflecting both the initial vision and user needs, gathering feedback on the user experience. The team prioritizes a clean, engaging, and accessible design. Based on feedback, they will refine the prototype and send the final designs to the dev team.
Step 4: Development and integration
Tech experts will use best practices to develop your RPM system iteratively to meet regulatory compliance. This work may include front and backend components, patient and doctor apps, and integration of medical devices.
Step 5: Testing
When it comes to RPM development — thorough software testing is as important as the development itself. After testing, developers should prioritize IoMT device compatibility. They must also ensure smooth integration with the RPM system for the most stability.
Step 6: Ongoing improvements
After deployment, the dev team monitors and tunes the RPM system to meet business and tech needs. They provide training and support for patients and healthcare professionals.
Beyond monitoring and troubleshooting, your tech team will prepare a roadmap for software updates. This will enhance the system's features and security in the future.
RPM Software Deployment: Challenges and Practical Solutions
Let us explore the most notable challenges organizations encounter while deploying their RPM.
Regulatory compliance
RPM's compliance with HIPAA and GDPR relies on strong data security and privacy. It must meet standards like ISO 27001 and IEC 62304 for this.
What to do:
Develop a comprehensive compliance framework according to all requirements like HIPAA, GDPR, FTC (Federal Trade Commission), FDA regulations, and more.
Conduct regular audits and assessments outlining clear policies and protocols for staff.
Provide ongoing staff training to ensure they are aware of their responsibilities.
Data security and privacy
Healthcare organizations handle sensitive patient data (vitals, medical history, personal details, reports, treatment plans). Unauthorized access poses the risk of data breaches and subsequent fines that could total millions of dollars.
What to do:
Use encryption techniques of RPM-collected data, telehealth appointment recordings, and other sensitive patient health data.
Implement strong authentication and role-based access.
Regular audits and security assessments.
Conduct employee and patient training.
Adopt role-based access control (RBAC)
Technology integration and compatibility
Outdated systems may lack compatibility, hindering integration and impacting data accuracy and security. Integrating EHR and clinical systems can also be difficult, affecting data sharing and patient care. Ensuring interoperability for seamless data exchange adds another layer of complexity.
What to do:
Assess current infrastructure compatibility.
Follow interoperability standards and protocols.
Adopt HL7 and FHIR standards.
Cost-benefit analysis
RPM implementation presents a cost-benefit challenge for healthcare organizations. While offering benefits like improved outcomes and enhanced care, the substantial upfront investment in hardware, software, infrastructure, licensing, staff training, regulatory compliance, and data security must be carefully weighed.
What to do:
Conduct thorough cost assessments.
Estimate ROI and potential cost savings.
Strategically allocate resources.
Data precision and accuracy
Inaccurate data transmission from RPM devices (e.g., wearables) poses a significant challenge, potentially leading to misdiagnosis and compromised treatment. Several factors can affect data accuracy, including device calibration, signal interference, network issues, and device quality.
What to do:
Choose quality sensors and wearables.
Regularly calibrate devices.
Implement quality assurance measures.
Lack of patient engagement
Some patients fear switching to modern healthcare and its tech just because they are used to in-person hospital visits. Thus, using the devices, checking vital signs, and messaging the doctor may be hard for the patients.
What to do:
Prioritize a user-friendly interface.
Craft tutorials for device usage and RPM data analytics interpretation.
Incorporate gamification elements (e.g., badges, progress tracking) to incentivize engagement.
Bridge language barriers for diverse patient populations by providing support in multiple languages.
RPM software development cost
The cost of developing Remote Patient Monitoring (RPM) software varies based on complexity, features, and the development team's location. Here’s a breakdown of the estimated costs associated with RPM software development:
Basic RPM application ranges from $50K – $70K.
Standard RPM software ranges from $100K – $400K or higher, depending on the specific requirements and features.
Costs can be $500K or more for advanced solutions with complex systems and integrations.
Both building an in-house tech team and outsourcing software development come with significant costs: salaries/recruitment expenses versus hourly rates and vendor fees. Without proper research, you risk overpaying for a software solution — whether through in-house hiring costs or outsourcing fees — or settling for a product that doesn't meet your requirements.
To calculate the precise budget for your RPM software development idea — please fill out this form. We will contact you shortly.
Best RPM software
Here are some popular remote patient monitoring use cases that might inspire you for your own:
CoachCare
CoachCare was founded over a decade ago, now supports over 3,000 organizations, and serves over 150,000 patients. Boasting a remarkable RPM, it claims a success rate exceeding 95%. It advocates for RPM coverage and collaborates with groups like CMS and AMA. CoachCare's tech lets patients log vital health metrics via an app. Its simplicity boosts engagement. Experts recognize its support of the healthcare industry.
Healee
Healee is a health tech company founded in 2017, now handles over 700,000 visits per month, both onsite and virtual, and supports 5,000 physicians across 200 clinics. With EHR, e-prescription, and billing integrations, the Healee platform streamlines healthcare delivery in wellness, mental health, chronic care, and women's health.
Doctolib
Founded in Paris in 2013, Doctolib is a top healthcare booking platform. It serves over 400,000 providers and 50 million users. It handles 70 million monthly bookings in France, Germany, and Italy. It offers appointment scheduling, telemedicine, and patient messaging. These services reduce missed appointments by 60% and save doctors 1.5 hours per week on administrative tasks.
Senseonics
This company revolutionizes blood glucose monitoring. The system features a sleek, removable transmitter and a sensor expertly implanted under the skin by a healthcare pro. Connected to a mobile app, the sensor offers real-time insights, alerting patients through their smartphones or smartwatches when their glucose levels are too high. Sharing data with healthcare providers and family members becomes a breeze, ensuring optimal treatment strategies.
Currently, around 6,000 users benefit from the Eversense CGM system. By 2025, Senseonics aims to double that number.
Teladoc
Established in 2006, this Hoboken, New Jersey-based powerhouse is revolutionizing healthcare. With an extensive network of licensed professionals, HRS proudly claims the #1 spot in KLAS’ ‘Top Remote Patient Monitoring Companies’ from 2020 to 2023.
HRS offers its innovative PatientConnect platform, featuring over 90 tailored RPM plans for healthcare providers. Beyond monitoring, HRS embraces holistic care, providing behavioral health services like therapy and psychiatry, ensuring a comprehensive touch on every aspect of patient wellbeing.
Improving patient outcomes with RPM software: A case by Darly Solutions
In particular, the health tech company approached us about remote patient monitoring software development. They faced challenges with patient tech literacy, especially among the elderly. There was a risk of data overload for providers. Patient engagement was inconsistent. There was a need for system integration, like with EHRs. Plus, they had to ensure data privacy and security (HIPAA compliance).
Since the deadline was tight and there were a lot of high-precision requirements — we created a detailed plan for the project, assigned UX/UI design, web development, QA, and project management tasks, and pinpointed the tech stack.
Technology stack
We understood that choosing the right technology stack was crucial for success. After thorough consideration, we selected:
Angular: For building dynamic web applications.
HTML/CSS: For structuring and formatting the user’s interface.
Docker: To streamline deployment through containerization.
ngRx: For effective state management.
TailwindCSS: To enable rapid UI development.
NGX Pagination: For efficient handling of large datasets.
JSON: For smooth and efficient data transfer between client and server.
Our efforts paid off. We launched the product on time, meeting all design, functionality, and quality standards. Our client now has a competitive product that is well-placed to thrive in the innovative telemedicine sector.
Rising public interest, health concerns, and tech advances drive the RPM market to new heights in solutions and revenue. As we noted earlier, these technologies enable 24/7 health monitoring. They also provide remote populations with access to quality treatments.
Doctors, nurses, and other healthcare staff should focus less on routine, manual tasks in the next few years. They should focus on saving lives and providing treatment, which RPM can support perfectly. It can greatly reduce burnout and ease stress on global healthcare systems while driving market share to higher results and stakeholder benefits.
This is a great time if you're considering developing your RPM solution.
Connect with us
At this stage, we get acquainted with your needs, outline the goals and desired results. We are always happy to take your project to the next level, and then beyond
We are a tech partner that delivers ingenious digital solutions, engineering and vertical services for industry leaders powered by vetted talents.
Successfully sent!
We have received your submission and will get back to you shortly.