What Distinguishes the Top Web Design Agencies from the Rest
Ivan Hohanov
Head of UX
March 5, 2024
2
min read
If you are currently looking for a web agency that you can safely entrust with your task regardless of its complexity and scale, this article is for you. Below, we will find out how to identify the best web design agencies and also consider several aspects that will lead you to the best choice.
What Sets Apart Top Web Design Companies
So, what distinctive features should top web development agencies have? In general, you have to check four fundamental ones.
Innovative Design and Cutting-Edge Technology
If we are talking about a top web solutions agency, you should visit and analyze its website – this way, you will be able to understand whether its specialists follow web design trends, use modern technologies, and whether all this is reflected in the design of their website as well. Just check how modern their website looks, and also visit the Blog, Our Services, and Niches We Cover sections – here, you can get a complete picture of how regularly these guys up their skills.
Client-Centric Approach and Custom Solutions
The best web agencies should have a client-focused design approach, and this is always reflected in their values and mission, which can be described either in the same sections of the website or in the more general About Us block. You can also look through their web design portfolio to make sure that the projects they worked on look diverse and do not repeat the same or a couple of good templates.
Case Studies: Success Stories
In general, today, it is difficult to find digital web agencies whose websites do not have a blog with case studies (or a private resource where they are posted and to which you can get access upon request), but exceptions do exist. Ultimately, you are better off avoiding those who fall into the second category because no matter how visually attractive their works are, the benefit of the created UX designs can always be measured by specific metrics. This means that if this analysis was not carried out on any of the previous projects, the same thing could happen to yours, and you will simply get pretty pictures instead of an innovative design that will provide you with the necessary conversion rates, user traffic, etc.
Client Testimonials
Finally, you will need to check reviews about cooperation with web development agencies of your choice, left by real clients. It is better to do this on third-party independent web resources where companies post their short presentations, such as Clutch, Upwork, etc. This way, you will be sure that the insights you received are honest and that you did not just read the praises left by employees of the specific agency about themselves.
Key Considerations When Choosing a Web Design Agency
If, after the research briefly described above, you already have a couple of agencies in mind, you can easily narrow down your choice for one by clarifying the following details.
Setting the Right Budget
If you think that you have already found your ideal web design agency and you truly like its ultimate web designs, make sure that your budget allows cooperation with it. The fact is that the pricing policies of agencies can differ greatly from region to region, as well as depend on their position in the market (experienced ones usually have a higher price tag because of their positive reputation and image).
Performing a Thorough Agency Search
If you had several agencies in mind, you may have filtered out the vast majority (or even all) of them in the previous step. In this case, in order not to be limited to a small sample, you will need to expand your list. To do this, you can use not only Google search results (although this is quite an effective tool for such tasks) but also all kinds of online rating platforms, LinkedIn, and, of course, your personal business connections. It is recommended that, at this stage, you have at least five agencies under consideration.
Asking the Right Questions
Now, it is the time to communicate with representatives of your chosen agencies personally and discuss issues that are critical to your possible cooperation with them. They are typically related to experience in your business niche, experience working on projects of your size, understanding your vision for the financial solution, and the supporting collaboration models and types of services (custom design, redesign, template-based design, etc.) that suit you best.
Conclusion
Now, you know the main criteria by which you can distinguish top web design agencies, and you can safely go in search of such one. And, of course, we cannot miss the opportunity to recommend ourselves to you. In particular, you can clarify the considerations that we provided above with our sales representative to gain confidence that your project will fall into the right hands.
Telehealth, simply put, is some type of delivery. It helps to provide health care services when patients and health professionals are separated by distance via remote technologies. Telehealth uses technologies for the exchange of information for the diagnosis and treatment of diseases and injuries for the patients. Live video conferencing, mobile health apps and remote patient monitoring (RPM) are examples of technologies used in telehealth.
It’s Healthtech time
Telehealth is improving the healthcare industry in many ways, the first of which is increasing its accessibility. Telehealth allows specialists to visit patients virtually from any place in the world by improving access as well as making a wider range of healthcare services available via telemedicine.
Today’s Telehealth environment consists of a global ecosystem of myriad digital solutions. There are two alarming end-users trends that you should pay attention to when considering Telehealth design and solutions.
What doctors struggle the most with
What people looking for when they choose the healthcare providers
Providing virtualized healthcare to any place in the world is one of the best-known applications of telehealth. But the medical industry is using it in several other ways, including:
Urgent help in distance. It can be a headache or sore throat. There are many medical complaints that aren’t life-threatening, but they need some professional attention. Virtual care services allow skilled health personnel to treat minor complaints, including providing appropriate prescriptions.
Stay in contact. Qualified medical personnel can use messages, phone and video calls to follow up the patients after they are discharged from the hospital. This way, improves worker productivity from not having to take time off and travel to appointments and ensures each patient understands the importance and carries out recovery and treatment plans. Also, telehealth platforms can automate much of the communication process, including sending reminders to the patients.
Updating online prescription. Telehealth provides the possibility to update online prescriptions even If you’ve been unable to get to your own doctor to refill a current prescription.
Monitoring of patients with chronic conditions. For these patients, it is one of the best benefits of telehealth. Virtual care helps those who have mobility issues, mental illness, and other conditions that may prevent them from going to in person medical appointments.
Facilitating care to rural areas. Telehealth is a great way to provide patients in places that are outside the current health delivery system with access to quality care. In the event of a medical emergency, telemedicine makes it possible to coordinate with specialists in other regions without wasting time to provide patients with effective treatment.
Increased patient satisfaction. In addition to referrals, many patients assess and choose healthcare providers through online reviews. As such, you must have positive reviews that will attract new patients. Telemedicine helps improve patient satisfaction scores by providing convenience of care and reducing wait time. The providers have the opportunity to offer remote services to the patients and make it convenient for them to receive medical attention. Also, this process reduces in-hospital visits.
All right, let’s move on to the design
Telehealth platforms require a unique approach to service design. As you can imagine, it isn’t the same way, say, for a food delivery service.
Telehealth is not about technology, it’s about people
That’s a good reminder that you need to create space for telehealth that provides human connections and assistance. The healthcare industry is unique and complex, and it can be challenging to set up. Establishing fundamental principles to guide telehealth design will help us keep sight of the user experience and user journey throughout different healthcare systems.
In this article, we’ll highlight the important and unique challenges in the design faced by digital health companies and startups.
Research. To begin, you need a shared understanding of how you usually provide face to face care. You will need a solid understanding of the patient’s journey through your service.
Construction. Based on our research findings, you need to discuss them with your client. There is the moment when you draft innovative solutions and delve into user journeys. We identify the most promising ideas based on jointly developed options. Service design can be quite abstract. The main idea is to find key service touchpoints.
Strategize and develop Next, it is necessary to work with your clients to co-create a product roadmap and business strategy. Together with medical professionals, you develop an extensive plan of the envisioned telehealth design, listing interactions between users, new processes, and workflows. Also, don’t forget to define the physical and digital things that will be used. By the end of this step, you’ve created visual content and material to start the development process.
Taking it live. From our experience, we recommend turning digital and physical artifacts into minimum viable products (MVP). MVP is essential to clinical trials. There is a product that has basic features and can be used to get feedback from the users.
After the main last modifications, it’s time for launch! At this stage, it’s important to provide testing to ensure that the envisioned workflow and interactions are happening as intended.
That’s it
To sum up, telemedicine is full of benefits for patients and healthcare providers. When people have had a taste of telehealth, they’re willing to continue using this convenient care option.
Telehealth’s future looks very bright, doesn’t it?
Also, it’s obvious to see continued strong growth and upgrade around devices, communication channels, telemedicine services, and telehealth platforms. Look for them to become increasingly user-friendly and convenient. As this happens, we can expect to see a resulting increase in users. After all, good design is the right way to improve engagement.
Designers will need to imagine themselves in both the patients’ and providers’ roles during the preparation for the start to create the design for telehealth. Every detail of a visit, from the method of scheduling appointments to the distribution of follow-up procedures, should be carefully planned to ensure the best outcomes and clear understanding.
We can expect to see digital pharmacies, virtual appointments, online triage tools, and remote monitoring gain in popularity. It may well become the new normal in healthcare.
In 2024 alone, the medical imaging software market size reached $8.11B. By 2029, it is projected to grow to $11.83B and up to 7.84% at a CAGR. This is a fairly predictable trend due to the development of AI. Especially since big data, cloud technologies, and other advancements are already significantly speeding up the accuracy of diagnostics.
If you are considering custom development of medical image analysis software, now is the most favorable time. Below, we will reveal the specifics of creating such solutions and describe the requirements and the challenges you may face.
What is the definition of medical imaging software?
Medical imaging software — it's the digital tool doctors use to examine medical images. Think X-rays, MRI and CT scans, ultrasounds, PET, and other radiology scans. Basically, it helps to see the details of every complex illness and make informed decisions about patient care.
To maximize efficiency, medical imaging software integrates a range of advanced technologies. These include AI for anomaly detection, ML for image segmentation, and methods for filtering, contrast enhancement, and noise reduction to improve image quality.
Also, 3D reconstruction technologies create volumetric models of organs and tissues. Developers also rely on the DICOM standard for medical images as it allows seamless transfer. They also use cloud tech to access data, integrated medical records, and VR and AR to visualize data and create interactive interfaces.
As a result, with medical image analysis software, healthcare organizations reduce the workload of their doctors and researchers and minimize the likelihood of misdiagnosis.
Examples of medical imaging software
To better grasp how these solutions work, we suggest you look at several medical imaging software examples that have gained worldwide recognition.
RadiAnt DICOM viewer
It is a high-performance medical imaging software that processes DICOM images. Due to its rich functionality, both doctors and researchers use it in their work. It has smart multimodality tools for 3D and 2D visualization and MPR (multiplanar reconstruction). Moreover, developers made the interface very user-friendly, so this software is also a great choice for users with low technical skills.
OsiriX MD
Specifically designed for macOS, OsiriX MD is a powerful DICOM platform that meets the needs of radiologists. Its advanced capabilities support 3D and 4D image analysis, hybrid imaging with PET-CT and PET-MRI, and integration with PACS servers. Crucially, it is FDA- and CE-certified for clinical use.
Horos
Horos is a free OsiriX-based DICOM viewer available on macOS. It has rich customization options for analyzing volumetric data, such as 3D reconstruction, and is especially useful for students and researchers.
GE Healthcare Centricity PACS
GE Healthcare Centricity PACS is a proprietary enterprise medical image analysis software that analyzes medical images. It has EHR and EMR integration, real-time collaboration, advanced AI analysis, DICOM standards, and format support. It can be a full-fledged assistant for doctors and researchers.
Philips IntelliSpace Portal
Tailored for large clinical institutions, Philips IntelliSpace Portal excels in medical image analysis and visualization. It integrates AI-driven automation and tools for multiparametric imaging in cardiology, neurology, and oncology; this medical imaging software supports multi-user collaboration.
Key features of medical image processing software
This section explores the key functionalities typically found in standard medical imaging software.
Tools for viewing and processing medical images
Ensure your medical imaging software works with various input data (CT scans, MRI scans, X-rays, ultrasounds, and hybrid studies like PET-CT and PET-MRI). Usually, this is done by supporting the DICOM format. In addition, you will need tools to scale, rotate, and adjust image contrast. So, optionally, develop a panel for 3D and 4D visualization, including multiplanar reconstruction.
AI-driven image analysis
AI is key in automating the detection of anomalies in medical scans. It can identify cancerous tumors, blood clots, and fractures early, with a high degree of independence. Also, AI in your medical imaging software can classify pathologies using trained models. It can segment organs and tissues on scans and analyze multiparametric data.
Diagnostic and treatment planning tools
This includes tools for creating 3D models, surgical planning, and evaluating the effectiveness of treatment. You should also consider integrating your medical imaging software with robotic surgical systems.
Medical data management tools
To implement effective medical data management, you will probably need to integrate your medical imaging software with PACS (for storing and transmitting data), EHRs (for centralized access to personal patient information), and cloud solutions (for unimpeded access to images from anywhere in the world where there is an Internet connection).
Collaboration tools
It's mainly for remote access so doctors and specialists can chat and comment on each other's actions. It also involves integrating telemedicine platforms to discuss complex cases and hold educational seminars.
What types of organizations need medical image analysis software development?
A wide range of organizations can benefit from medical image analysis software development. Now, let's find out which areas of healthcare benefit from medical imaging software the most.
Cardiology.
In this field, medical imaging software is mostly used to analyze CT and MRI of the heart and angiography. In addition, it monitors treatment effectiveness, plans operations, and predicts cardiovascular disease risks.
Dentistry.
Inevitable for 3D scanning when planning dental implants, diagnosing jaw diseases, visualizing root canals, etc.
Oncology. Here, medical imaging software detects and classifies tumors, tracks their growth, and assesses treatment effectiveness.
Neurology.
In this sector, medical image analysis software analyzes brain MRIs and CTs and provides 3D visualizations to assess the spine and nerves.
Orthopedics.
Orthopedics studies thrive on precise X-ray analysis, which includes 3D joint modeling and spinal disease diagnostics.
Mammology.
Medical imaging software can detect microcalcifications and early breast cancer through comparative analysis of changes in mammary gland tissue.
Urology.
In this industry, medical imaging software helps diagnose kidney and bladder diseases. It does this by analyzing CT and ultrasound images. Additionally, the software can help plan operations and monitor patients with chronic diseases.
Pulmonology.
Industry specialists can use such software to diagnose lung diseases, analyze chest CT data, and assess COVID-19 damage.
Gynecology.
In most cases, medical image analysis software is used to perform pregnancy ultrasounds. It helps monitor the fetus, find pelvic tumors, and analyze the endometrium and other tissues.
Traumatology and emergency medicine.
In traumatology, 3D medical imaging software can quickly diagnose fractures and internal injuries. It can also visualize organs for urgent decisions.
Still, deciding on the right healthcare sector for your medical imaging project? Contact us and discuss the possibilities of its practical implementation with Darly Solutions' experienced developers.
Medical imaging software development: Steps to follow
Custom development must follow clearly defined stages that most teams use. But, it can still be approached in various ways. Below, we outline how healthcare software development services are delivered in our company.
Concept formation
Start your medical imaging software project with market analysis. Define the target audience, prioritize tasks the software should solve, and research competitors (to identify their strengths and weaknesses). Based on the insights, our medical imaging software development team assesses the functional requirements and evaluates the need for specific technologies to handle image processing. This ensures that the chosen solutions align with the project's technical needs and optimize the processing of healthcare-related images.
Planning
Once we agree on the conditions with all stakeholders, we will write a technical specification for your medical imaging software. This document will describe its functionality, interface, API, security, and integration requirements. We will also approve the tech stack and necessary integrations. Finally, we create a roadmap that defines the milestones and deliverables for each medical imaging software development project stage.
Prototyping
Now that everything is ready, we can begin creating user stories. They include handling DICOM file uploads and 3D models, among other key tasks. For UX/UI best practices of safe data, we follow the WCAG 2.1 guidelines. They ensure accessibility for users with varying technical skills. We also test prototypes with focus groups to see feedback on complex features, which is helpful for future design improvement. Finally, after the edits are done, we develop a full-fledged design.
Coding
The frontend has algorithms to process and analyze medical images. The backend ensures secure data transfer between the medical imaging software and storage. It also encrypts data and protects against vulnerabilities like SQL injections. These involve writing database queries for smooth software interactions and data storage interactions. And last but not least — we also integrate with your healthcare org's existing systems and services (if any).
Testing
Once the code for your medical imaging software is ready and all components have passed unit tests, we run complete test cases. We check for load, functional, non-functional, security, and usability issues.
Deployment
At this stage, we are choosing hosting for your medical imaging software (usually either cloud or local servers), setting up CI/CD, and training end users, for example, by providing them with documentation, training materials, or live courses. Once we've done it, we deploy the solution (first in the test environment and then — in the actual usage environment).
Support and updates
Finally, after the medical imaging software is deployed, we set up monitoring systems to track its performance and detect errors, fix post-release bugs, optimize it according to user feedback, and add new features if required.
Key tech specifications for medical imaging software development
Such software development can be complex, especially in its early stages. Basically, there is often no clear way to turn an abstract idea into actual requirements.
So, let's examine all the key tech specifications that are usually implemented in medical imaging software apps:
Support for common medical image formats such as DICOM (including DICOM tags for metadata) and standards for storing, transmitting, and processing medical images (such as C-STORE, C-FIND, and C-MOVE).
Compatibility with various devices (CT, MRI, ultrasound, etc.).
Image processing can improve images by adjusting contrast brightness and applying filters. It can also segment them to highlight organs and tissues. Lastly, it can register them to compare scans over time.
2D and 3D visualization, including volume rendering (CT/MRI), support for iso-sections and reconstructions, and interactivity (e.g., rotation, zoom, and pan).
Data security, including HIPAA and GDPR compliance, support for TLS (for data transfer) and AES-256 (for image and metadata storage) encryption standards, as well as access control with role-based authorization and two-factor authentication.
PACS and EHR/EMR integration (e.g., via HL7/FHIR).
Annotation (adding labels, arrows, and text comments) and providing real-time collaboration tools.
PDF report generation and image export.
Scalability (including horizontal scaling via the cloud), multi-threading, and hardware acceleration.
WCAG 2.1 compliance and user interface customization.
Logging and monitoring events (including loading, processing, and exporting scans), auditing user access, tracking system performance, and setting up failure notifications.
Local deployment of software on physical servers (most likely, this will require ensuring compatibility with Linux and Windows OS).
Setting up regular data backups and automatic recovery after system failures.
Of course, this is just a basic list of specifications. In practice, your project team will expand and refine the list of features while specifying the tools and technologies for the project's unique needs.
Medical imaging software development cost
When it comes to the development cost of medical image analysis software it depends on its complexity and the technologies used. Without data and business needs — it's hard to define the precise price, but on average, basic DICOM (Digital Imaging and Communications in Medicine) typically ranges from $30K to $300K. A customized version of Basic DICOM may cost $30K to $50K. Advanced customizations could cost $70K to $150K.
Implementation costs differ based on the size of the practice:
Small practices typically cost $5K to $10K and take 1 to 2 weeks.
Medium facilities cost $20K to $50K and take 1 to 3 months.
Large enterprises may cost $100K to $200K and take 3 to 6 months.
Please complete this form to calculate the precise budget for your medical imaging software development idea. We will contact you shortly.
Challenges in medical imaging software development
Let's examine the main challenges encountered when developing medical imaging software.
Regulatory compliance. Software handling sensitive data, like patient information, must comply with HIPAA, GDPR, FDA 21 CFR Part 11, and CE Marking regulations. Key security measures include code audits, RBAC, 2FA, and strong encryption (e.g., AES-256, TLS). To avoid fines, consult a local lawyer on medical standards.
Integration with existing systems. Integrating PACS, EHRs, and other systems requires DICOM, HL7, and FHIR support. Also, medical organizations have very different established IT infrastructures, which makes it hard to unify their software. If you create a universal solution, you must provide some middleware. It will help users adapt to various services and systems.
High performance and scalability.
Medical images, especially CT and MRI, are large. This can slow their processing and increase resource needs. In this regard, you may need to implement lossless compression mechanisms for images and multithreading and parallel data processing algorithms. By the way, a common fix is to move your software to a cloud solution designed for healthcare businesses.
The complexity of big data management.
Storing and processing massive data, like images and metadata, require a careful choice of databases and storage. In particular, this implies a preference for distributed databases and object storage. For even greater reliability, do not forget to provide backup and auto-recovery.
Risks associated with cyber attacks.
Cyber attacks that leak medical data are a serious problem for healthcare software. To solve it, you must implement constant monitoring. Also, set up regular security updates, including patches and OS updates. Finally, train your staff on social engineering. It can reduce the risks of phishing attacks. Providing a user-friendly interface. Interfaces for doctors and medical personnel should be user-friendly and intuitive, requiring minimal technical training to operate efficiently. To achieve this goal, you must test hi-fi prototypes on the real target audience and perform subsequent optimizations. Also, do not forget to ensure your interface is created under the WCAG 2.1 guidelines.
The future of medical imaging software
Medical imaging software development will advance by adopting the newest technologies, process optimization, and increased integration with other medical systems.
So, here are the core areas in which medical imaging software can be optimized:
Speeding up diagnostic.
Increasing image recognition accuracy.
Costs reduction.
Improving user experience.
This can be achieved through the implementation and development of the following technologies:
Artificial intelligence and machine learning.
For highly accurate and automatic analysis of medical images and accelerated diagnostics.
Cloud computing.
To provide quick access to medical images from anywhere in the world, process large amounts of data without the need to upgrade local infrastructure, and implement remote collaboration between healthcare specialists.
VR/AR.
Medical imaging software development allows anatomy and pathologies to be studied using interactive 3D models and visualize the patient's anatomy before surgery.
Quantum computing.
While most quantum computers are not yet available for widespread use, they will speed up processing large datasets and training neural networks for image recognition in a few years.
Blockchain.
To guarantee the immutability and protection of data from medical imaging software while providing patients with comprehensive control over their medical information.
Our experience in medical imaging software development
This section covers the development of the PrismaORM brain scanner. This platform was crafted for chiropractors, neurologists, and neurosurgeons to monitor brain activity and brainwaves before, during, and after chiropractic treatments.
First, we assembled a team of eight experts to bring this vision to life. They worked closely with two external teams of medical imaging software engineers. We've pointed out a tech stack based on PostgreSQL, Typescript, React Native, Nest.js, Expo, Three.js, and SQLite. This tech of choice lets us build a platform that processes real-time data from brain activity helmets. The BLE protocol transmits this data. A tablet interface visualizes it. A key to the project's success was optimizing the user experience. This included better platform performance and integrating 3D models.
As a result — we've made a powerful tool that empowers medical professionals to conduct more precise diagnostics and offer more effective treatment recommendations.
Now that you understand the specifics of medical image analysis software development, you can begin searching for a team to bring your project to life. We are a reliable provider of custom healthtech solutions, ensuring a smooth, transparent, and predictable collaboration. Simply fill out the form, and we'll get in touch as soon as possible to discuss your medical imaging software project in detail.
You've probably experienced some inconveniences while navigating any web or mobile app, and this irritated you a lot, especially, when you were limited on time, right? A similar situation may occur to your app’s or website’s users if your development team makes these most popular mistakes.
Case #1 — Skipping User Profile
If you are aiming at crafting a truly bad UI design, don’t even try to figure out who your target audience is. And vice versa, if you wish to produce a good outcome, do make sure you have ascertained the user's preferences, needs, and the so-called “pain points”. If you address the customer's headache to the point, you will get positive feedback in return.
Consequences you should avoid:
poor designs that may fail to address the expectations and encourage people to switch to another website or app;
time wasted by users because they were unable to meet their needs through your solution.
Solutions to fix the problem:
in-depth customer research, including interviews;
creation of user personas;
regular usability checks and testing (both alpha and beta) to make sure each element and user flow is as convenient as possible.
Case #2 – Complex, Complex, and a Bit More Complicated
There is a reverse effect, too. When developers strive to incorporate as many features as possible, especially the advanced ones, in the end, they may build bad interfaces.
Consequences to avoid:
disorientation – the user may wander from feature to feature;
lots of time needed for app/website onboarding and achieving an “expert” navigation level;
low conversion rates.
Solutions to fix the problem:
simplicity is above all, especially in terms of hierarchy design;
templates must be consistent, so make interactive elements and the overall navigation coherent.
Case #3 – Ignoring Accessibility
Ensure that your app is easy to use by everyone, including people with disabilities.
Consequences to avoid:
ethical and legal issues – non-compliance with the basic norms may lead to fines and blocking of the application/web resource;
users with disabilities are excluded from the pool of the target audience;
forming a negative brand appearance.
Solutions to fix the problem:
adhere to the generally-accepted norms and best practices (you can find them in the WCAG 2.0 guidelines);
utilize semantic markup;
test your solution thoroughly before its launch.
Case #4 – Mobile Apps Appear in a Ban
As people use smartphones and tablets throughout the day, ignoring the peculiarities of mobile app development may become a catastrophic mistake.
Consequences to avoid:
it is easy to lose a significant part of your potential users in a few seconds, as soon as they find out there is no mobile app on app stores;
lower audience engagement score;
poor navigation experience.
Solutions to fix the problem:
develop a flexible UI/UX design that operates smoothly on multiple screen sizes;
adopt a mobile-first design approach;
test an app on devices with different form-factors.
Case #5 – Forgetting about the Balance between Appearance and Functionality
It is more than bad if you compromise one of these aspects. In fact, your app should solve the users’ tasks and be beautiful at the same time.
Consequences you have to avoid:
building a reputation of a brand with “that poor design and bad user interface”;
frustrated customers who like some aspects and hate other ones.
Solutions to fix the problem:
prioritize functionality over appearance a bit – emphasize responsive designs;
make sure these two aspects are coherent.
Case #6 – Following the Trends Blindly
There may be many trends. Still, be mindful when using them and pick only those that are coordinated with your solution’s concept.
Consequences to avoid:
making your app too flashy;
creating a solution that is similar or even identical to another one, especially a very popular one.
Solutions to fix the problem:
develop your own personalized interaction design and follow it;
be mindful and balanced when following some mobile design trends;
avoid copyright issues – this is actually one of the most severe UI problems.
Case #7 – Overloading Users with Lots of Irrelevant Info
Trying to provide as many details as possible may sometimes have an adverse effect.
Consequences you should avoid:
breaking your users’ minds with the irrelevant and unnecessary information;
confusion because of numerous conflicts between the datasets;
mistakes in the descriptions and other blocks of information.
Solutions to fix the problem:
ensure there is a visual hierarchy between the separate information blocks;
make sure it contrasts the rest of the space well;
include relevant information solely;
keep it brief, polite, and to the point.
Case #8 – Misleading Customers with Numerous Buttons and Links
Any excessive features will only worsen the overall impression a customer may have. Make sure you double-check that when the story comes to buttons and redirects. Keeping all the things as simple as possible is among the primary usability principles.
Consequences to avoid:
including too many links and buttons, among other duplicating ones;
providing irrelevant links.
Solutions to fix the problem:
limit the number of redirects and buttons.
Case #9 – Pop-ups Bombarding
It is difficult to find something more irritating than pop-ups. When a developer foresees dozens of such features appearing once a user accesses an app, the situation turns into a nightmare.
Consequences to avoid:
confusing users with unnecessary information and features;
making them leave.
Solutions to fix the problem:
be mindful about adding pop-ups – make sure they look well, and their number is not excessive;
avoid those pop-ups that are difficult to close once they appear – let your users decide, they will be grateful only.
Case #10 – Avoid Any Upgrades and Optimization
If your customers are experiencing any interface issues, and you, as a service provider, prefer not to notice their complaints and respond to them, that is the right way to a failure. The issue is especially urgent if the interface is slow and lacks responsiveness.
Consequences to avoid:
you leave your customers dissatisfied and make them switch to using a more user-friendly alternative;
lower conversion rates.
Solutions to fix the problem:
regularity test and fix UI issues as they appear;
optimize features and images to make them load smoothly.
Bottom Line
The 10 most widespread mistakes listed in this article commonly adverse the overall user navigation and even make clients leave. Save this article to check the things to refrain from. If you would like to request proficient help with fixing these UI design mistakes and other possible drawbacks, get in touch with us. Our developers are keen on excelling in designs and functionality, so they will elaborate on truly effective solutions for your product.
Connect with us
At this stage, we get acquainted with your needs, outline the goals and desired results. We are always happy to take your project to the next level, and then beyond
We are a tech partner that delivers ingenious digital solutions, engineering and vertical services for industry leaders powered by vetted talents.
Successfully sent!
We have received your submission and will get back to you shortly.